ProRace: Practical Data Race Detection for Production Use lfgﬁﬁTech

Tong Zhang, Changhee Jung, Dongyoon Lee

\P ‘ &_ﬂ,» |
Department of Computer Science, Virginia Tech NS ;
MOTIVATION LIGHTWEIGHT PROGRAM TRACING
e Multithreaded programs are vulnerable to data race errors Linux PMU Drive ProRace’s PMU Drive
: Thread 1 Thread 2
% if (p) { \ perf tool | Perf.data ‘/@D\ perf tool | Pert-data
E% p=NULL = —mmmmmmm— i -
§§ % controllers pu (p?) Wall clock time \ @ INg Buffer ¥ ng Buffer I\
- B OS |_sample period ; OS Interrupt Handler
6t Generation Intel Core™ Processor MySQL bug #3596 Record 0 || Record 0
Interrupt Handler @ Record 1 Record 1
e Race Condition have caused severe real-world problems = —-——==-=-—==-—-—----- Z77TTTZ0T mmmmmom s e -y - -
: ' . ' PMU PMU
foa::iat?osn I;acebook glitch came from 'race Hardware @ Record 1 ardware @ m——
Nasdaq may pay out as much as $13 million due to a DS Area DS Area
Bl his l}é By Joab Jacko 'ﬁ B
Therac-25 Northeast Blackout (2003) Nadaq stock price mismatch (2012) We compared ProRace’s new PMU driver with Linux’s PMU driver
Problem: ¢ The state-of-the-art dynamic data race detectors are very slow 49.92 7 o ® Vanilla ® ProRace
5

- ¢.g. FastTrack, Intel’s Inspector XE, and Google’s TSan: 10-100x
* Sampling based data race detector:

4

3
2
1.08 1.02
1 1 I | I nin
0

1000 10000 100000 1000 10000 100000

- high sampling overhead, e.g. LiteRace(1.47x), Pacer(1.86x)
- low detection capability, e.g. DataCollider, RaceZ

Normalized Overhead

BACKGROUND

. PARSEC Real Applications
e Sampling Based Detector

e PT: full program control flow ~ PEBS: sample architecture state HIGH DETECTION CAPABILITY VIA REPLAY

PT PEBS Thread | Thread 2 PEBS Recover unsampled memory accesses using backward and forward replay
across basicblock, while RaceZ only support replay within single basicblock

t0 Taken
Branch PT PEBS Thread 1 Thread 2 PEBS
= NULL
(] p Sample p " No p=malloc()
Taken Sample if (p) {
t2 Branch || Here
t] Sample r r= &P»
LL Sample
Time t2 p=NU ple p
t3
. : : - Forward replay
e Goal of data race detection 1n production environment
- Low overhead, more samples for given performance budget - : Backward replay
ime
- ngh detection capability Detection Capability at Sampling Period 1000

M RaceZ ™ ProRace

OUR APPROACH

ProRace Overview:
e Enhanced PMU Driver

e Forward and Backward Replay to Reconstruct More Un-sampled Memory

Detection Capability (%)
N U N o
o 02 o 0] o
I
[
H
|
|
i
I
]
I
-
/

I
I
I
_

Operation A\ o 3 N o
P S U I A Q & W o« ~o &
AZ v W \ N N e e W o Q X ¥
< < 4 SO © O N2 N 0" w @ v
— ~ ~ & & \) ¢ & Q- S °
_ Sync. Opsﬁw l Data Race Data ’bQ ’bQ ’bQ & & \0,\,\6\/ . \Q'V
L|brary > Trace | Detector > RRace Q v
L[—' = | _r eport
Hardware & OS
\ PT / > Corllt_;glcglo‘ —|> Decode & Memory Ops Extended N CONCLUSION
/ = : Synthesis —» Reconstruction —® Memory
N rees / omoy %T | e ProRace lowers the runtime cost of sampling and introduced new
/ S Arch. Status : — App”0| —— technique to reconstruct un-sampled memory accesses, which enhanced
Runtime Sinary | Offline data race detection coverage.

* Part of this research 1s supported by NSF and Google.

