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MOTIVATION

ProRace lowers the runtime cost of sampling and introduced new 
technique to reconstruct un-sampled memory accesses, which enhanced 
data race detection coverage.
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ProRace:	Practical	Data	Race	Detection	for	Production	Use

• Goal of data race detection in production environment
- Low overhead, more samples for given performance budget
- High detection capability

LIGHTWEIGHT	PROGRAM	TRACING

Recover unsampled memory accesses using backward and forward replay 
across basicblock, while RaceZ only support replay within  single basicblock

• Multithreaded programs are vulnerable to data race errors 
Thread 1 Thread 2

if ( p ) {

fputs( p, …)
}

p = NULL

crash

MySQL bug #3596

• Race Condition have caused severe real-world problems

Northeast Blackout (2003)Therac-25 Nadaq stock price mismatch (2012)

Problem: • The state-of-the-art dynamic data race detectors are very slow
- e.g. FastTrack, Intel’s Inspector XE, and Google’s TSan: 10-100x

• Sampling based data race detector:
- high sampling overhead, e.g. LiteRace(1.47x), Pacer(1.86x)
- low detection capability, e.g. DataCollider, RaceZ

BACKGROUND

• Sampling Based Detector
• PT: full program control flow           PEBS: sample architecture state

* Part of this research is supported by NSF and Google.

HIGH	DETECTION	CAPABILITY	VIA	REPLAY

OUR	APPROACH

ProRace Overview:
• Enhanced PMU Driver
• Forward and Backward Replay to Reconstruct More Un-sampled Memory 

Operation

CONCLUSION
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We compared ProRace’s new PMU driver with Linux’s PMU driver

t0

t1

t2

PEBS Thread 1 Thread 2

if ( p ) {

*p++;
}

p = NULL

crash

PT

Time

Taken 
Branch

Sample p

PEBS

Sample p

Sample r

PT

Taken 
Branch

PEBS

Forward replay

Backward replay

Thread 1 Thread 2

p=malloc()
if ( p ) {

r = &p;

*p++;
}

p = NULL

crash

Time

t0

t1

t2

t3

PEBS

Sample p

No 
Sample 
Here


