
Hardware & OS

Application
Binary

Library

PT
Control Flow

Trace

PEBS Memory Trace
& Arch. Status

Sync. Ops
Trace

Decode &
Synthesis

Memory Ops
Reconstruction

(Section 5)

Extended
Memory
Trace

Data Race
Detector

Data
Race

Report

Section 4.1

Runtime Offline

Section 4.2

Section 4.3

PMU

DS Area

Record 0
Record 1

Record n

perf.data

Hardware 1

OS

perf tool 4

Interrupt Handler

Ring Buffer

MOTIVATION

ProRace lowers the runtime cost of sampling and introduced new
technique to reconstruct un-sampled memory accesses, which enhanced
data race detection coverage.

Department	of	Computer	Science,	Virginia	Tech
Tong	Zhang,	Changhee Jung,	Dongyoon Lee

ProRace:	Practical	Data	Race	Detection	for	Production	Use

• Goal of data race detection in production environment
- Low overhead, more samples for given performance budget
- High detection capability

LIGHTWEIGHT	PROGRAM	TRACING

Recover unsampled memory accesses using backward and forward replay
across basicblock, while RaceZ only support replay within single basicblock

• Multithreaded programs are vulnerable to data race errors
Thread 1 Thread 2

if (p) {

fputs(p, …)
}

p = NULL

crash

MySQL bug #3596

• Race Condition have caused severe real-world problems

Northeast Blackout (2003)Therac-25 Nadaq stock price mismatch (2012)

Problem: • The state-of-the-art dynamic data race detectors are very slow
- e.g. FastTrack, Intel’s Inspector XE, and Google’s TSan: 10-100x

• Sampling based data race detector:
- high sampling overhead, e.g. LiteRace(1.47x), Pacer(1.86x)
- low detection capability, e.g. DataCollider, RaceZ

BACKGROUND

• Sampling Based Detector
• PT: full program control flow PEBS: sample architecture state

* Part of this research is supported by NSF and Google.

HIGH	DETECTION	CAPABILITY	VIA	REPLAY

OUR	APPROACH

ProRace Overview:
• Enhanced PMU Driver
• Forward and Backward Replay to Reconstruct More Un-sampled Memory

Operation

CONCLUSION

6th Generation Intel Core™ Processor

PMU

DS Area

Record 0
Record 1

Record n

perf.data

Hardware

+

2

1

OS

perf tool

3

4

Wall clock time

sample period

…

Interrupt Handler

Ring Buffer

Linux PMU Drive ProRace’s PMU Drive

49.92 7.8

PARSEC

7.52

Real	Applications

0

1

2

3

4

5

10 100 1000 10000 100000 10 100 1000 10000 100000

N
or
m
al
ize

d	
O
ve
rh
ea
d

Vanilla ProRace

1.08 1.02

0

25

50

75

100

De
te
ct
io
n	
Ca
pa
bi
lit
y	
(%

)

Detection	Capability	at	Sampling	Period	1000

RaceZ ProRace

We compared ProRace’s new PMU driver with Linux’s PMU driver

t0

t1

t2

PEBS Thread 1 Thread 2

if (p) {

*p++;
}

p = NULL

crash

PT

Time

Taken
Branch

Sample p

PEBS

Sample p

Sample r

PT

Taken
Branch

PEBS

Forward replay

Backward replay

Thread 1 Thread 2

p=malloc()
if (p) {

r = &p;

*p++;
}

p = NULL

crash

Time

t0

t1

t2

t3

PEBS

Sample p

No
Sample
Here

