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- ¢.g. FastTrack, Intel’s Inspector XE, and Google’s TSan: 10-100x
* Sampling based data race detector:
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- high sampling overhead, e.g. LiteRace(1.47x), Pacer(1.86x)
- low detection capability, e.g. DataCollider, RaceZ
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BACKGROUND

. PARSEC Real Applications
e Sampling Based Detector

e PT: full program control flow ~ PEBS: sample architecture state HIGH DETECTION CAPABILITY VIA REPLAY

PT PEBS Thread | Thread 2 PEBS Recover unsampled memory accesses using backward and forward replay
across basicblock, while RaceZ only support replay within single basicblock
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e Goal of data race detection 1n production environment
- Low overhead, more samples for given performance budget - : Backward replay
ime
- ngh detection capability Detection Capability at Sampling Period 1000

M RaceZ ™ ProRace

OUR APPROACH

ProRace Overview:
e Enhanced PMU Driver

e Forward and Backward Replay to Reconstruct More Un-sampled Memory

Detection Capability (%)
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